

Many-core and Accelerator-based Computing for Physics and Astronomy Applications Nov 29-Dec 2, 2009, Stanford, US

Parallel implementation of LBM on GPU-based cluster

Xiaowei Wang, Xipeng Li, Yun Zhang, Bo Li, Wei Ge

Institute of Process Engineering, CAS

Outline

- About us
- Introduction
- Lattice Boltzmann method
- Serial implementation
- Parallel implementation
- Performance analysis
- Coupled implementation with AMD GPUs
- Application
- Conclusions

Institute of Process Engineering, CAS

Beijing Map

The position of our institute in CAS

Why GPU for Computing? —Peak Flops

(from CUDA Programming Guide 04/02/2009)

Massive parallel processor

CPU: ~4 @ 3.2 Ghz (Intel Quad Core) 4*3.2*4*2 = 102.4 G

GPU: ~240 @ 1.296 Ghz (Nvidia GeForce GTX280) 1.296*240*3 = 933 G

Why GPU for Computing?—Memory BW

(from CUDA Programming Guide 04/02/2009)

High memory bandwidth

CPU: 21 GB/s

GPU: 141.7 GB/s (Nvidia GTX280)

Why GPU for Computing? –High Performance/Price Peak flops/Power

Super computer	Rpeak (Tflops)	Expenses	Power (KW)	Peak flops/Power (Tflops/KW)
Roadrunner	1456.7	> 0.1 Billon \$	2483	0.587
Magic Cube	233.47	>0.1 Billon Y	720	0.324
GPU	Rpeak (Tflops)	Expenses	Power (KW)	Peak flops/Power (Tflops/KW)
NV Tesla C1060	0.933	~10000 Y	0.188	4.96
NV Geforce GTX 280	0.933	~3000 ¥	0.236	3.89

GPU+CPU: Future architecture for HPC?

"GPUs have evolved to the point where many real-world applications are easily implemented on them and run significantly faster than on multi-core systems. Future computing architectures will be hybrid systems with parallel-core GPUs working in tandem with multi-core CPUs."

——Jack Dongarra (Linpack, Top500, US)

"A serious competitor for the multi-core CPU is represented by graphical processing units (GPUs), which are graphic cards used for scientific computing. There are four basic things about GPUs. They are fast and will get a lot faster. They are cheap, measured on a performance-per-dollar basis. They use less power than CPUs when compared on a performance-per-watt basis.

.......For the near future, we expect that the hardware architecture will be a combination of specialised CPU and GPU type cores."

Hans Meuer(Chairman of ISC,Top500,Germany)

LBM Basics

D2Q9 Model

Fluid described by a distribution function of fluid (quasi-)particles.

Lattice Unit

Lattice Boltzmann Algorithm

- Very similar to an explicit finite difference scheme
- Macroscopic fluid
 quantaties are derived from
 microscopic quantaties
- Collision

Serial implementation

Jonas Tolke, Computing and Visualization in Science, 2008: p. s00791-008-0120-2

- two 1D array for the distribution function of each direction
- one for current step and next step
- three main kernel function
 - ◆ LBCollProp(): collosion and propagation
 - ◆ LBExchange(): exchange between thread blocks
 - ◆ LBBC(): for the inlet and outlet boundary

LBCollProp() kernel

- each thread compute one lattice separately
- unite collosion and propagation in the kernel
- share memory for the propagation along east and west

LBExchange () kernel

- exchange the distribute function along east and west
- each thread compute one line sequentially

Block(4,1,1) Grid (1,2)

LBBC () kernel

- modify the distribute function at inlet and outlet
- each thread compute one line sequentially, two lattice (inlet and outlet)

Block(4,1,1) Grid (1,2)

distributation function of inlet and outlet change

Parallel implementation

- Neighbor lattice transfer before collision
 - boundary lattice collision overlapped
 - communication scheme same
- Neighbor lattice transfer after collision
 - no overlapped computation
 - communication scheme complex

Communication for 1D partition

Block(4,1,1) Grid (2,1)

Communication for 2D partition

Shift communication scheme

Kernel for corner lattice transfer in y direction Block (2,1,1) Grid(1,1)

Domain of GPU with different partitions

Partition only along X

Partition only along Y

Partition along X and Y

Flow chart of GPU implementation

Parallel

HARDWARE-- GPU Cluster

Per MP: 8 Functional units 8192 Registers 16KB shared Memory

16 Multiprocessors

Tesla C870

System Configuration

Peak performance: 127 Tflops Single Precision

Compute Node: 126×HP8600 Workstation

CPU: 252×Intel Xeon E5430 2.66GHz

GPU: 200×NV Tesla C870

NVTesla c1060

NV Gefroce GTX280

NV Gerorce GTX295

AMD HD4870X2

Network: Gigabyte Ethernet

DDR Infiniband

Switch: H3C 7506R

Operating system: CentOS 5.1

Software: icc/gcc ,MPI, Cuda

Performance analysis –Block size

Average time per step with different mesh size and number of threads (ms)

Number of Thread	32	64	128	256
Mesh size				
1024×1024	5.42	3.26	2.88	2.71
2048×2048	28.47	16.13	12.84	11.15
4096×4096	115.44	64.66	51.67	45.96

利用Xeon 2.66GHz CPU计算的时间结果 (ms)

Mesh size	Time (ms)
1024×1024	72.20
2048×2048	288.34
4096×4096	1154.45

Performance analysis – GPU topology

Average time per step for multi GPUs with different topology

	(IIIS)	
Processor Topology	Total Time	Comm time
1×2¹	24.08	1.56
1×2^2	27.50	4.52
2×1 ¹	108.07	1.09
2×1^2	111.46	5.00
1×4	25.60	13.28
4×1	69.20	12.28
2×2	77.51	25.66
2×4	54.74	22.25
4×2	56.01	27.50
1×8	20.85	9.19
8×1	42.56	13.42
2×8	42.79	17.53
8×2	41.21	14.67
4×4	60.09	38.50

Profiler for LBCollProp()

```
1X2 gst_coherent=[ 2358532 ]
    gst_incoherent=[ 2 ]
    gst_coherent=[ 4 ]
2X1 gst_incoherent=[ 18871298 ]
```


Performance analysis –GPU type

Parallel: 4096X4096, GPU topo (1X4), Block size =256

Performance analysis –Network type

Mesh size: 4096x4096, only one GPU on each node

Implementation of LBM on AMD GPU

Coupled computation with Brook+

Meso-Scale Flow in Porous Media

Picture of rock sample

picture

Flow field

Simulation of fractured reservoir

Conclusions

- ◆ LBM is suitable to be run large scale on GPU cluster
- The performance will be affected by some factors, such as thread block size, topology, GPU type, network
- Optimization is important to gain high performance
- ◆ The implementation of LBM coupled on both NVIDIA GPU and AMD GPU

Thank you!

